Skip to content

NML

glm_nml

BirdModelBlock

Bases: _BaseBlock

Construct the &bird_model model parameters.

The &bird_model parameters define the surface irradiance based on the Bird Clear Sky Model (BCSM) (Bird, 1984). BirdModelBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
AP Union[float, None]

Atmospheric pressure (hPa). Default is None.

Oz Union[float, None]

Ozone concentration (atm-cm). Default is None.

WatVap Union[float, None]

Total Precipitable water vapor (atm-cm). Default is None.

AOD500 Union[float, None]

Dimensionless Aerosol Optical Depth at wavelength 500 nm. Default is None.

AOD380 Union[float, None]

Dimensionless Aerosol Optical Depth at wavelength 380 nm. Default is None.

Albedo Union[float, None]

Albedo of the surface used for Bird Model insolation calculation. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> bird_model = glm_nml.BirdModelBlock(
...     AP=973,
...     Oz=0.2
... )
>>> bird_model_attrs = {
...     "Oz": 0.279,
...     "WatVap": 1.1,
...     "AOD500": 0.033,
...     "AOD380": 0.038,
...     "Albedo": 0.2
... }
>>> bird_model.set_attributes(bird_model_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

GLMNML

Write GLM NML files.

The General Lake Model (GLM) namelist file (.nml) describes the parameter configuration for running simulations. The GLMNML class builds a NML file by combining dictionaries of parameters that correspond with each configuration block, e.g., &glm_setup, &morphometry, and &time. Each dictionary of parameters can be constructed using the respective block classes, e.g., glm_nml.SetupBlock, glm_nml.MorphometryBlock, and glm_nml.TimeBlock.

An optional check_errors argument can be set to raise errors when parameters from separate configuration blocks are in conflict. The NML file can be saved using the write_nml() method.

Attributes:

Name Type Description
glm_setup dict

Dictionary of &glm_setup parameters. See glm_nml.SetupBlock. Required for every GLM simulation.

morphometry dict

Dictionary of &morphometry parameters. See glm_nml.MorphometryBlock . Required for every GLM simulation.

time dict

Dictionary of &time parameters. See glm_nml.TimeBlock. Required for every GLM simulation.

init_profiles dict

Dictionary of &init_profiles parameters. See glm_nml.InitProfilesBlock. Required for every GLM simulation.

mixing Union[dict, None]

Dictionary of &mixing parameters. See glm_nml.MixingBlock. Default is None.

output Union[dict, None]

Dictionary of &output parameters. See glm_nml.OutputBlock. Default is None.

meteorology Union[dict, None]

Dictionary of &meteorology parameters. See glm_nml.MeteorologyBlock . Default is None.

light Union[dict, None]

Dictionary of &light parameters. See glm_nml.LightBlock. Default is None.

bird_model Union[dict, None]

Dictionary of &bird_model parameters. See glm_nml.BirdModelBlock. Default is None.

inflow Union[dict, None]

Dictionary of &inflow parameters. See glm_nml.InflowBlock. Default is None.

outflow Union[dict, None]

Dictionary of &outflow parameters. See glm_nml.OutflowBlock. Default is None.

sediment Union[dict, None]

Dictionary of &sediment parameters. See glm_nml.SedimentBlock. Default is None.

snow_ice Union[dict, None]

Dictionary of &snow_ice parameters. See glm_nml.SnowIceBlock. Default is None.

wq_setup Union[dict, None]

Dictionary of &wq_setup parameters. See glm_nml.WQSetupBlock. Default is None.

Examples:

Import the glm_nml module:

>>> from glmpy.nml import glm_nml

Initialise instances of the NML configuration block classes:

>>> glm_setup = glm_nml.SetupBlock()
>>> morphometry = glm_nml.MorphometryBlock()
>>> time = glm_nml.TimeBlock()
>>> init_profiles = glm_nml.InitProfilesBlock()
>>> mixing = glm_nml.MixingBlock()
>>> output = glm_nml.OutputBlock()
>>> meteorology = glm_nml.MeteorologyBlock()
>>> light = glm_nml.LightBlock()
>>> bird_model = glm_nml.BirdModelBlock()
>>> inflow = glm_nml.InflowBlock()
>>> outflow = glm_nml.OutflowBlock()
>>> sediment = glm_nml.SedimentBlock()
>>> snow_ice = glm_nml.SnowIceBlock()
>>> wq_setup = glm_nml.WQSetupBlock()

Set the instance attributes from dictionaries of GLM parameters (omitted for brevity):

>>> glm_setup.set_attributes(glm_setup_attrs)
>>> morphometry.set_attributes(morphometry_attrs)
>>> time.set_attributes(time_attrs)
>>> init_profiles.set_attributes(init_profiles_attrs)
>>> mixing.set_attributes(mixing_attrs)
>>> output.set_attributes(output_attrs)
>>> meteorology.set_attributes(meteorology_attrs)
>>> light.set_attributes(light_attrs)
>>> bird_model.set_attributes(bird_model_attrs)
>>> inflow.set_attributes(inflow_attrs)
>>> outflow.set_attributes(outflow_attrs)
>>> sediment.set_attributes(sediment_attrs)
>>> snow_ice.set_attributes(snow_ice_attrs)
>>> wq_setup.set_attributes(wq_setup_attrs)

Initialise the GLMNML class and pass in the consolidated dictionaries ( returned by the call method of block classes).

>>> nml_file = glm_nml.GLMNML(
...     glm_setup=glm_setup(),
...     morphometry=morphometry(),
...     time=time(),
...     init_profiles=init_profiles(),
...     mixing=mixing(),
...     output=output(),
...     meteorology=meteorology(),
...     light=light(),
...     bird_model=bird_model(),
...     inflow=inflow(),
...     outflow=outflow(),
...     sediment=sediment(),
...     snow_ice=snow_ice(),
...     wq_setup=wq_setup()
... )

Write the .nml file with the write_nml() method.

>>> nml_file.write_nml(nml_file_path="glm3.nml")

write_nml(nml_file_path='glm3.nml', list_len=None)

Write the .nml file.

Write the .nml of model parameters.

Parameters:

Name Type Description Default
nml_file_path str

File path to save .nml file, by default glm3.nml.

'glm3.nml'
list_len Union[int, None]

The number of items in a comma-separated list to write before adding a line break. When set to None, no line breaks are added. Default is None.

None

Examples:

>>> nml_file.write_nml(nml_file_path="my_lake.nml")

InflowBlock

Bases: _BaseBlock

Return the &inflow parameter dictionary.

The &inflow parameters define river inflows and submerged inflows. InflowBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
num_inflows Union[int, None]

Number of inflows to be simulated in this simulation. Default is None.

names_of_strms Union[List[str], str, None]

Names of each inflow. A list if num_inflows > 1. Default is None.

subm_flag Union[List[bool], bool, None]

Switch indicating if the inflow is entering as a submerged input. A list if num_inflows > 1. Default is None.

subm_elev Union[List[float], float, None]

Elevation of the submerged inflow. A list if num_inflows > 1. Default is None.

strm_hf_angle Union[List[float], float, None]

Angle describing the width of an inflow river channel ("half angle"). A list if num_inflows > 1. Default is None.

strmbd_slope Union[List[float], float, None]

Slope of the streambed / river thalweg for each river (degrees). A list if num_inflows > 1. Default is None.

strmbd_drag Union[List[float], float, None]

Drag coefficient of the river inflow thalweg, to calculate entrainment during insertion. A list if num_inflows > 1. Default is None.

coef_inf_entrain Union[List[float], float, None]

Undocumented parameter. A list if num_inflows > 1. Default is None.

inflow_factor Union[List[float], float, None]

Scaling factor that can be applied to adjust the provided input data. A list if num_inflows > 1. Default is None.

inflow_fl Union[List[str], str, None]

Filename(s) of the inflow CSV boundary condition files. A list if num_inflows > 1. Default is None.

inflow_varnum Union[int, None]

Number of variables being listed in the columns of inflow_fl. Can include GLM variables. Default is None.

inflow_vars Union[List[str], str, None]

Names of the variables in the inflow_fl. Provide variables in the order as they are in the file. Default is None.

time_fmt Union[str, None]

Time format of the 1st column in the inflow_fl. For example, 'YYYY-MM-DD hh:mm:ss'. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> inflow = glm_nml.InflowBlock(
...     num_inflows=5,
...     names_of_strms= ['Inflow1','Inflow2','Inflow3','Inflow4','Inflow5']
... )
>>> inflow_attrs = {
...     "num_inflows": 6,
...     "names_of_strms": [
...         'Inflow1','Inflow2','Inflow3','Inflow4','Inflow5','Inflow6'
...     ],
...     "subm_flag": [False, False, False, True, False, False],
...     "strm_hf_angle": [85.0, 85.0, 85.0, 85.0, 85.0, 85.0],
...     "strmbd_slope": [4.0, 4.0, 4.0, 4.0, 4.0, 4.0],
...     "strmbd_drag": [0.0160, 0.0160, 0.0160, 0.0160, 0.0160, 0.0160],
...     "inflow_factor": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
...     "inflow_fl": [
...         'bcs/inflow_1.csv', 'bcs/inflow_2.csv', 'bcs/inflow_3.csv', 
...         'bcs/inflow_4.csv', 'bcs/inflow_5.csv', 'bcs/inflow_6.csv'
...     ],
...     "inflow_varnum": 3,
...     "inflow_vars": ['FLOW', 'TEMP', 'SALT'],
...     "coef_inf_entrain": 0.0,
...     "time_fmt": 'YYYY-MM-DD hh:mm:ss'
... }
>>> inflow.set_attributes(inflow_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

InitProfilesBlock

Bases: _BaseBlock

Construct the &init_profiles model parameters.

The &init_profiles parameters define the initial conditions at specific depths in the water body. InitProfilesBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
lake_depth Union[float, None]

Initial lake height/depth (m). Default is None.

num_depths Union[int, None]

Number of depths provided for initial profiles. Default is None.

the_depths Union[List[float], float, None]

The depths of the initial profile points (m). Default is None.

the_temps Union[List[float], float, None]

The temperature (°C) at each of the initial profile points. Default is None.

the_sals Union[List[float], float, None]

The salinity (ppt) at each of the initial profile points. Default is None.

num_wq_vars Union[int, None]

Number of non-GLM (i.e., FABM or AED2) variables to be initialised. Default is None.

wq_names Union[List[str], str, None]

Names of non-GLM (i.e., FABM or AED2) variables to be initialised. Default is None.

wq_init_vals Union[List[float], float, None]

List of water quality variable initial data. Default is None.

restart_variables Union[List[float], float, None]

Restart variables to restart model from a previous saved state. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> init_profiles = glm_nml.InitProfilesBlock(
...     lake_depth=43,
...     num_depths=2
... )
>>> init_profiles_attrs = {
...     "num_depths": 3,
...     "the_depths": [1, 20, 40],
...     "the_temps": [18.0, 18.0, 18.0],
...     "the_sals": [ 0.5, 0.5, 0.5],
...     "num_wq_vars": 6,
...     "wq_names": [
...         'OGM_don','OGM_pon','OGM_dop','OGM_pop','OGM_doc','OGM_poc'
...     ],
...     "wq_init_vals": [
...         1.1, 1.2, 1.3, 1.2, 1.3,
...         2.1, 2.2, 2.3, 1.2, 1.3,
...         3.1, 3.2, 3.3, 1.2, 1.3,
...         4.1, 4.2, 4.3, 1.2, 1.3,
...         5.1, 5.2, 5.3, 1.2, 1.3,
...         6.1, 6.2, 6.3, 1.2, 1.3
...     ],
...     "restart_variables": [
...         70.30026370304032,
...         0.8994359224744514,
...         0.03906299522902229,
...         6.1835334329751606e-06,
...         6833986.341232119,
...         0.0,
...         0.10319285945774581,
...         25.0,
...         25.0,
...         25.0,
...         0.0,
...         70.30026370304032,
...         0.0,
...         0.0,
...         0.0,
...         0.0,
...         0.0
...     ]
... }
>>> init_profiles.set_attributes(init_profiles_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

LightBlock

Bases: _BaseBlock

Construct the &light model parameters.

The &light parameters define light penertration into the water body. LightBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary andperforms optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
light_mode Union[int, None]

Switch to configure the approach to light penetration. Options are 0 or 1. Default is None.

Kw Union[float, None]

Light extinction coefficient (m^{-1}). Used when light_mode=0. Default is None

Kw_file Union[str, None]

Name of file with Kw time-series included. Default is None.

n_bands Union[int, None]

Number of light bandwidths to simulate. Used when light_mode=1. Default is None.

light_extc Union[List[float], float, None]

Comma-separated list of light extinction coefficients for each waveband. Default is None.

energy_frac Union[List[float], float, None]

Comma-separated list of energy fraction captured by each waveband. Default is None.

Benthic_Imin Union[float, None]

Critical fraction of incident light reaching the benthos. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> light = glm_nml.LightBlock(
...     light_mode=0,
...     Kw=0.5
... )
>>> light_attrs = {
...     "n_bands": 4,
...     "light_extc": [1.0, 0.5, 2.0, 4.0],
...     "energy_frac": [0.51, 0.45, 0.035, 0.005],
...     "Benthic_Imin": 10
... }
>>> light.set_attributes(light_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

MeteorologyBlock

Bases: _BaseBlock

Construct the &meteorology model parameters.

The &meteorology parameters define a variety of meteorological dynamics, e.g., rainfall, air temperature, radiation, wind, and cloud cover. MeteorologyBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
met_sw Union[bool, None]

Switch to enable the surface heating module. Default is None.

meteo_fl Union[str, None]

Filename of the meterological file. Include path and filename. Default is None.

subdaily Union[bool, None]

Switch to indicate the meteorological data is provided with sub-daily resolution, at an interval equivalent to dt from nml.NMLTime (Δt). Default is None.

time_fmt Union[str, None]

Time format of the 1st column in the inflow_fl. For example, 'YYYY-MM-DD hh🇲🇲ss'. Default is None.

rad_mode Union[int, None]

Switch to configure which incoming radiation option to use. Options are 1, 2, 3, 4, or 5. Default is None.

albedo_mode Union[int, None]

Switch to configure which albedo calculation option is used. Options are 1 for Hamilton & Schladow, 2 for Briegleb et al., or 3 for Yajima & Yamamoto. Default is None.

sw_factor Union[float, None]

Scaling factor to adjust the shortwave radiation data provided in the meteo_fl. Default is None.

lw_type Union[str, None]

Switch to configure which input approach is being used for longwave/cloud data in the meteo_fl. Options are 'LW_IN' for incident longwave, 'LW_NET' for net longwave, or 'LW_CC' for cloud cover. Default is None.

cloud_mode Union[int, None]

Switch to configure which atmospheric emmissivity calculation option is used. Options are 1 for Idso and Jackson, 2 for Swinbank, 3 for Brutsaert, 4 for Yajima & Yamamoto. Default is None.

lw_factor Union[float, None]

Scaling factor to adjust the longwave (or cloud) data provided in the meteo_fl. Default is None.

atm_stab Union[int, None]

Switch to configure which approach to atmospheric stability is used. 0 for neutral conditions, 1 for an undocumented use case, and 2 for an undocumented use case. Default is None.

rh_factor Union[float, None]

Scaling factor to adjust the relative humidity data provided in the meteo_fl. Default is None.

at_factor Union[float, None]

Scaling factor to adjust the air temperature data provided in the meteo_fl. Default is None.

ce Union[float, None]

Bulk aerodynamic transfer coefficient for latent heat flux. Default is None.

ch Union[float, None]

Bulk aerodynamic transfer coefficient for sensible heat flux. Default is None.

rain_sw Union[bool, None]

Switch to configure rainfall input concentrations. Default is None.

rain_factor Union[float, None]

Scaling factor to adjust the rainfall data provided in the meteo_fl. Default is None.

catchrain Union[bool, None]

Switch that configures runoff from exposed banks of lake area. Default is None.

rain_threshold Union[float, None]

Daily rainfall amount (m) required before runoff from exposed banks occurs. Default is None.

runoff_coef Union[float, None]

Conversion fraction of infiltration excess rainfall to runoff in exposed lake banks. Default is None.

cd Union[float, None]

Bulk aerodynamic transfer coefficient for momentum. Default is None.

wind_factor Union[float, None]

Scaling factor to adjust the windspeed data provided in the meteo_fl. Default is None.

fetch_mode Union[int, None]

Switch to configure which wind-sheltering/fetch option to use. Options are 0 for no sheltering, 1 for area-based scaling, 2 for Markfort length-scale, or 3 for user input scaling table. Default is None.

Aws Union[float, None]

Undocumented parameter. Required if fetch_mode=1. Default is None.

Xws Union[float, None]

Undocumented parameter. Required if fetch_mode=2. Default is None.

num_dir Union[int, None]

Number of wind direction reference points being read in. Required if fetch_mode=2 or fetch_mode=3. Default is None.

wind_dir Union[float, None]

Wind directions used for wind-sheltering effects. Required if fetch_mode=2 or fetch_mode=3. Default is None.

fetch_scale Union[float, None]

Direction specific wind-sheltering scaling factors. Required if fetch_mode=2 or fetch_mode=3. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> meteorology = glm_nml.MeteorologyBlock(
...     met_sw=True,
...     lw_type='LW_NET'
... )
>>> meteorology_attrs = {
...     "lw_type": "LW_IN",
...     "rain_sw": False,
...     "atm_stab": 0,
...     "fetch_mode": 0,
...     "rad_mode": 1,
...     "albedo_mode": 1,
...     "cloud_mode": 4,
...     "subdaily": True,
...     "meteo_fl": 'bcs/met_hourly.csv',
...     "wind_factor": 0.9,
...     "ce": 0.0013,
...     "ch": 0.0013,
...     "cd": 0.0013,
...     "catchrain": True,
...     "rain_threshold": 0.001,
...     "runoff_coef": 0.0
... }
>>> meteorology.set_attributes(meteorology_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

MixingBlock

Bases: _BaseBlock

Construct the &mixing model parameters.

The &mixing parameters define the dynamics of layer mixing in the modelled water body. MixingBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
surface_mixing Union[int, None]

Switch to select the options of the surface mixing model. Options are 0 for no surface mixing, 1, and 2. Default is None.

coef_mix_conv Union[float, None]

Mixing efficiency - convective overturn. Default is None.

coef_wind_stir Union[float, None]

Mixing efficiency - wind stirring. Default is None.

coef_mix_shear Union[float, None]

Mixing efficiency - shear production. Default is None.

coef_mix_turb Union[float, None]

Mixing efficiency - unsteady turbulence effects. Default is None.

coef_mix_KH Union[float, None]

Mixing efficiency - Kelvin-Helmholtz billowing. Default is None.

deep_mixing Union[int, None]

Switch to select the options of the deep (hypolimnetic) mixing model. Options are 0 for no deep mixing, 1 for constant diffusivity, and 2 for the Weinstock model. Default is None.

coef_mix_hyp Union[float, None]

Mixing efficiency - hypolimnetic turbulence. Default is None.

diff Union[float, None]

Background (molecular) diffusivity in the hypolimnion. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> mixing = glm_nml.MixingBlock(
...     surface_mixing=1,
...     coef_mix_conv=0.1,
... )
>>> mixing_attrs = {
...     "coef_mix_conv": 0.125,
...     "coef_wind_stir": 0.23,
...     "coef_mix_shear":0.2,
...     "coef_mix_turb": 0.51,
...     "coef_mix_KH": 0.3,
...     "deep_mixing": 2,
...     "coef_mix_hyp": 0.5,
...     "diff": 0.0
... }
>>> mixing.set_attributes(mixing_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

MorphometryBlock

Bases: _BaseBlock

Construct the &morphometry model parameters.

The &morphometry parameters define the physical dimensions and location of the water body. MorphometryBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
lake_name Union[str, None]

Site name. Default is None.

latitude Union[float, None]

Latitude, positive North (°N). Default is None.

longitude Union[float, None]

Longitude, positive East (°E). Default is None.

base_elev Union[float, None]

Elevation of the bottom-most point of the lake (m above datum). Default is None.

crest_elev Union[float, None]

Elevation of a weir crest, where overflow begins (m above datum). Default is None.

bsn_len Union[float, None]

Length of the lake basin, at crest height (m). Default is None.

bsn_wid Union[float, None]

Width of the lake basin, at crest height (m). Default is None.

bsn_vals Union[int, None]

Number of points being provided to described the hyposgraphic details. Default is None.

H Union[List[float], None]

Comma-separated list of lake elevations (m above datum). Default is None.

A Union[List[float], None]

Comma-separated list of lake areas (m^2). Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> morphometry = glm_nml.MorphometryBlock(
...     lake_name='Example Lake',
...     latitude=30.0
... )
>>> morphometry_attrs = {
...     "latitude": 32.0,
...     "longitude": 35.0,
...     "base_elev": -252.9,
...     "crest_elev": -203.9,
...     "bsn_len": 21000.0,
...     "bsn_wid": 13000.0,
...     "bsn_vals": 45,
...     "H": [
...         -252.9, -251.9, -250.9, -249.9, -248.9, -247.9, -246.9, -245.9, 
...         -244.9, -243.9, -242.9, -241.9, -240.9, -239.9, -238.9, -237.9, 
...         -236.9, -235.9, -234.9, -233.9, -232.9, -231.9, -230.9, -229.9,  
...         -228.9, -227.9, -226.9, -225.9, -224.9, -223.9, -222.9, -221.9,  
...         -220.9, -219.9, -218.9, -217.9, -216.9, -215.9, -214.9, -213.9,  
...         -212.9, -211.9, -208.9, -207.9, -203.9
...     ],
...     "A": [
...         0, 9250000, 15200000, 17875000, 21975000, 26625000, 31700000, 
...         33950000, 38250000, 41100000, 46800000, 51675000, 55725000, 
...         60200000, 64675000, 69600000, 74475000, 79850000, 85400000, 
...         90975000, 96400000, 102000000, 107000000, 113000000, 118000000, 
...         123000000, 128000000, 132000000, 136000000, 139000000, 
...         143000000, 146000000, 148000000, 150000000, 151000000, 
...         153000000, 155000000, 157000000, 158000000, 160000000, 
...         161000000, 162000000, 167000000, 170000000, 173000000
...     ]
... }
>>> morphometry.set_attributes(morphometry_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

OutflowBlock

Bases: _BaseBlock

Construct the &outflow model parameters.

The &outflow parameters define withdrawals, outlets, offtakes, and seepage. OutflowBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
num_outlet Union[int, None]

Number of outflows (including withdrawals, outlets or offtakes) to be included in this simulation. Default is None.

outflow_fl Union[List[str], str, None]

Filename of the file containing the outflow time-series. A list if num_outlet > 1.Default is None.

time_fmt Union[str, None]

Time format of the 1st column in the outflow_fl. Default is None.

outflow_factor Union[List[float], float, None]

Scaling factor used as a multiplier for outflows. A list if num_outlet > 1. Default is None.

outflow_thick_limit Union[List[float], float, None]

Maximum vertical limit of withdrawal entrainment. A list if num_outlet > 1. Default is None.

single_layer_draw Union[List[bool], bool, None]

Switch to only limit withdrawal entrainment and force outflows from layer at the outlet elevation height. A list if num_outlet > 1. Default is None.

flt_off_sw Union[List[bool], bool, None]

Switch to indicate if the outflows are floating offtakes (taking water from near the surface). A list if num_outlet > 1. Default is None.

outlet_type Union[List[int], int, None]

Switch to configure approach of each withdrawal. Options are 1 for fixed outlet height, 2 for floating offtake, 3 for adaptive offtake/low oxy avoidance, 4 for adaptive offtake/isotherm following, or 5 for adaptive offtake/temp time-series. A list if num_outlet > 1. Default is None.

outl_elvs Union[List[float], float, None]

Outlet elevations (m). A list if num_outlet > 1. Default is None.

bsn_len_outl Union[List[float], float, None]

Basin length at the outlet height(s) (m). A list if num_outlet > 1. Default is None.

bsn_wid_outl Union[List[float], float, None]

Basin width at the outlet heights (m). A list if num_outlet > 1. Default is None.

crit_O2 Union[int, None]

Undocumented parameter. Default is None.

crit_O2_dep Union[int, None]

Undocumented parameter. Default is None.

crit_O2_days Union[int, None]

Undocumented parameter. Default is None.

outlet_crit Union[int, None]

Undocumented parameter. Default is None.

O2name Union[str, None]

Undocumented parameter. Default is None.

O2idx Union[str, None]

Undocumented parameter. Default is None.

target_temp Union[float, None]

Undocumented parameter. Default is None.

min_lake_temp Union[float, None]

Undocumented parameter. Default is None.

fac_range_upper Union[float, None]

Undocumented parameter. Default is None.

fac_range_lower Union[float, None

Undocumented parameter. Default is None.

mix_withdraw Union[bool, None]

Undocumented parameter. Default is None.

coupl_oxy_sw Union[bool, None]

Undocumented parameter. Default is None.

withdrTemp_fl Union[str, None]

Filename of the file containing the temperature time-series the adaptive withdrawal is targeting. Required if outlet_type=5. Default is None.

seepage Union[bool, None]

Switch to enable the seepage of water from the lake bottom. Default is None.

seepage_rate Union[float, None]

Seepage rate of water, or, soil hydraulic conductivity (m day^{-1}). Default is None.

crest_width Union[float, None]

Width of weir (at crest height) where lake overflows (m). Default is None.

crest_factor Union[float, None]

Drag coefficient associated with the weir crest, used to compute the overflow discharge rate. Applies only when the crest elevation is configured to be less than the maximum elevation of the domain. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> outflow = glm_nml.OutflowBlock(
...     num_outlet=1,
...     flt_off_sw=True
... )
>>> outflow_attrs = {
...     "flt_off_sw": False,
...     "outlet_type": 1,
...     "outl_elvs": -215.5,
...     "bsn_len_outl": 18000,
...     "bsn_wid_outl": 11000,
...     "outflow_fl" : 'bcs/outflow.csv',
...     "outflow_factor": 1.0,
...     "seepage": True,
...     "seepage_rate": 0.01
... }
>>> outflow.set_attributes(outflow_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

OutputBlock

Bases: _BaseBlock

Construct the &output model parameters.

The &output parameters define the contents and location of GLM output files. OutputBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
out_dir Union[str, None]

Directory to write the output files. Default is None.

out_fn Union[str, None]

Filename of the main NetCDF output file. Default is None.

nsave Union[int, None]

Frequency to write to the NetCDF and CSV point files. Default is None.

csv_lake_fname Union[str, None]

Filename for the daily summary file. Default is None

csv_point_nlevs Union[float, None]

Number of specific level/depth CSV files to be created. Default is None.

csv_point_fname Union[str, None]

Name to be appended to specified depth CSV files. Default is None.

csv_point_frombot Union[List[float], float, None]

Comma separated list identify whether each output point listed in csv_point_at is relative to the bottom (i.e., heights) or the surface (i.e., depths). Default is None.

csv_point_at Union[List[float], float, None]

Height or Depth of points to output at (comma-separated list). Default is None.

csv_point_nvars Union[int, None]

Number of variables to output into the csv files. Default is None.

csv_point_vars Union[List[str], str, None]

Comma separated list of variable names. Default is None.

csv_outlet_allinone Union[bool, None]

Switch to create an optional outlet file combining all outlets. Default is None.

csv_outlet_fname Union[str, None]

Name to be appended to each of the outlet CSV files. Default is None.

csv_outlet_nvars Union[int, None]

Number of variables to be written into the outlet file(s). Default is None.

csv_outlet_vars Union[List[str], str, None]

Comma separated list of variable names to be included in the output file(s). Default is None.

csv_ovrflw_fname Union[str, None]

Filename to be used for recording the overflow details. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> output = glm_nml.OutputBlock(
...     out_dir="output",
...     out_fn="output_file"
... )
>>> output_attrs = {
...     'out_fn': 'output',
...     'nsave': 6,
...     'csv_lake_fname': 'lake',
...     'csv_point_nlevs': 2,
...     'csv_point_fname': 'WQ_' ,
...     'csv_point_at': [5, 30],    
...     'csv_point_nvars': 7,
...     'csv_point_vars': [
...         'temp', 'salt', 'OXY_oxy', 'SIL_rsi', 
...         'NIT_amm', 'NIT_nit', 'PHS_frp'
...     ],
...     'csv_outlet_allinone': False,
...     'csv_outlet_fname': 'outlet_',
...     'csv_outlet_nvars': 4,
...     'csv_outlet_vars': ['flow', 'temp', 'salt', 'OXY_oxy'],
...     'csv_ovrflw_fname': "overflow"
... }
>>> output.set_attributes(output_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

SedimentBlock

Bases: _BaseBlock

Construct the &sediment model parameters.

The &sediment parameters define the thermal properties of the soil-sediment. SedimentBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
sed_heat_Ksoil Union[float, None]

Heat conductivity of soil/sediment. Default is None.

sed_temp_depth Union[float, None]

Depth of soil/sediment layer below the lake bottom, used for heat flux calculation. Default is None.

sed_temp_mean Union[List[float], float, None]

Annual mean sediment temperature. A list if n_zones > 1. Default is None.

sed_temp_amplitude Union[List[float], float, None]

Amplitude of temperature variation experienced in the sediment over one year. A list if n_zones > 1. Default is None.

sed_temp_peak_doy Union[List[int], int, None]

Day of the year where the sediment temperature peaks. A list if n_zones > 1. Default is None.

benthic_mode Union[int, None]

Switch to configure which mode of benthic interaction to apply. Options are 0 for bottom layer only, 1 for bottom layer and layer flanks, 2 for sediment zones, and 3 for an undocumented use case. Default is None.

n_zones Union[int, None]

Number of sediment zones to simulate. Required if benthic_mode=2 or benthic_mode=3. Default is None.

zone_heights Union[List[float], float, None]

Upper height of zone boundary. Required if benthic_mode=2 or benthic_mode=3. Default is None.

sed_reflectivity Union[List[float], float, None]

Sediment reflectivity. Default is None.

sed_roughness Union[List[float], float, None]

Undocumented parameter. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> sediment = glm_nml.SedimentBlock(
...     sed_heat_Ksoil=0.0,
...     sed_temp_depth=0.1
... )
>>> sediment_attrs = {
...     "sed_temp_depth": 0.2,
...     "sed_temp_mean": [5, 10, 20],
...     "sed_temp_amplitude": [6, 8, 10],
...     "sed_temp_peak_doy": [80, 70, 60],
...     "benthic_mode": 1,
...     "n_zones": 3,
...     "zone_heights": [10.0, 20.0, 50.0],
...     "sed_reflectivity": [0.1, 0.01, 0.01],
...     "sed_roughness": [0.1, 0.01, 0.01]
... }
>>> sediment.set_attributes(sediment_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

SetupBlock

Bases: _BaseBlock

Construct the &glm_setup model parameters.

The &glm_setup parameters define the vertical series of layers that GLM resolves when modelling a water body. SetupBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
sim_name Union[str, None]

Title of simulation. Default is None.

max_layers Union[int, None]

Maximum number of layers. Default is None.

min_layer_vol Union[float, None]

Minimum layer volume (m^3). Default is None.

min_layer_thick Union[float, None]

Minimum thickness of a layer (m). Default is None.

max_layer_thick Union[float, None]

Maximum thickness of a layer (m). Default is None.

density_model Union[int, None]

Switch to set the density equation. Options are 1 for TEOS-10, 2 for UNESCO(1981), and 3 for a custom implementation. Default is None.

non_avg Union[bool, None]

Switch to configure flow boundary condition temporal interpolation. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup = glm_nml.SetupBlock(
...     sim_name="Example Simulation #1",
...     max_layers=250
... )
>>> glm_setup_attrs = {
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup.set_attributes(glm_setup_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

SnowIceBlock

Bases: _BaseBlock

Construct the &snowice model parameters.

The &snowice parameters define the formation of snow and ice cover on the water body. SetupBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
snow_albedo_factor Union[float, None]

Scaling factor used to as a multiplier to scale the snow/ice albedo estimate. Default is None.

snow_rho_max Union[float, None]

Minimum snow density allowable (kg m^{-3}). Default is None.

snow_rho_min Union[float, None]

Maximum snow density allowable (kg m^{-3}). Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> snow_ice = glm_nml.SnowIceBlock(
...     snow_albedo_factor=1.0,
...     snow_rho_min=40
... )
>>> snow_ice_attrs = {
...     "snow_rho_min": 50,
...     "snow_rho_max": 300
... }
>>> snow_ice.set_attributes(snow_ice_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

TimeBlock

Bases: _BaseBlock

Construct the &time model parameters.

The &time parameters define the duration and timestep of a GLM simulation. TimeBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

Attributes:

Name Type Description
timefmt Union[int, None]

Time configuration switch. Options are 2 when using start and stop parameters or 3 when using num_days. Default is None.

start Union[str, None]

Start time/date of simulation in format 'yyyy-mm-dd hh🇲🇲ss'. Default is None.

stop Union[str, None]

End time/date of simulation in format 'yyyy-mm-dd hh🇲🇲ss'. Used when timefmt=2. Default is None.

dt Union[float, None]

Time step (seconds). Default is None

num_days Union[int, None]

Number of days to simulate. Used when timefmt=3. Default is None.

timezone Union[float, None]

UTC time zone. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> time = glm_nml.TimeBlock(
...     timefmt=3,
...     start="1998-01-01 00:00:00"
... )
>>> time_attrs = {
...     "start": "1997-01-01 00:00:00",
...     "stop": "1999-01-01 00:00:00",
...     "dt": 3600.0,
...     "num_days": 730,
...     "timezone": 7.0
... }
>>> time.set_attributes(time_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

WQSetupBlock

Bases: _BaseBlock

Construct the &wq_setup model parameters.

The &wq_setup parameters define the coupling of GLM with water quality and biogeochemical model libraries, e.g., AED2. WQSetupBlock provides the means to construct a dictionary containing these parameters for use in the glm_nml.GLMNML class. Model parameters are set as attributes upon initialising an instance of the class or using the set_attributes() method. The get_params() method returns the parameter dictionary and performs optional error checking to ensure compliant parameters.

wq_lib : Union[str, None] Water quality model selection. Options are "aed2" and "fabm". Default is None. wq_nml_file : Union[str, None] Filename of water quality configuration file, e.g., "./aed2.nml". Default is None. bioshade_feedback : Union[bool, None] Switch to enable K_{w} to be updated by the WQ model. Default is None. mobility_off : Union[bool, None] Switch to enable settling within the WQ model. Default is None. ode_method : Union[int, None] Method to use for ODE solution of water quality module. Default is None. split_factor : Union[float, None] Factor weighting implicit vs explicit numerical solution of the WQ model. split_factor has a valid range between 0.0 and 1.0. Default is None. repair_state : Union[bool, None] Switch to correct negative or out of range WQ variables. Default is None.

Examples:

>>> from glmpy.nml import glm_nml
>>> wq_setup = glm_nml.WQSetupBlock(
...     wq_lib="aed2",
...     wq_nml_file = "aed2/aed2.nml"
... )
>>> wq_setup_attrs = {
...     "wq_nml_file": "aed2/aed2.nml",
...     "ode_method": 1,
...     "split_factor": 1,
...     "bioshade_feedback": True,
...     "repair_state": True,
...     "mobility_off": False
... }
>>> wq_setup.set_attributes(wq_setup_attrs)

get_params(check_params=False)

Returns a dictionary of model parameters.

Consolidate the model parameters set during class instance initialisation, or updated through set_attributes(), into a dictionary suitable for use with the glm_nml.GLMNML class.

Parameters:

Name Type Description Default
check_params bool

If True, performs validation checks on the parameters to ensure compliance with GLM. Default is False.

False

Returns:

Type Description
dict[str, Any]

A dictionary containing the configuration block parameters.

set_attrs(attrs_dict)

Set attributes for an instance of a configuration block class.

Parameters:

Name Type Description Default
attrs_dict dict

A dictionary of GLM parameters to set the respective attributes in the configuration block class instance.

required

Examples:

>>> from glmpy.nml import glm_nml
>>> glm_setup_attrs = {
...     "sim_name": "Example Simulation #1",
...     "max_layers": 500,
...     "min_layer_thick": 0.15,
...     "max_layer_thick": 1.50,
...     "min_layer_vol": 0.025,
...     "density_model": 1,
...     "non_avg": False
... }
>>> glm_setup = glm_nml.SetupBlock()
>>> glm_setup.set_attrs(glm_setup_attrs)

nml

NMLReader

Bases: _NML

Read NML files.

Read a NML file and return a dictionary of parameters that have been converted to Python data types. By default, NMLReader can parse parameters from the standard GLM NML configuration blocks. This functionality can expanded to read other non-standard blocks, or overwrite exisiting parameter conversion methods, using the converters argument. The converted NML dictionary can be returned in its entirety with get_nml(), or by block with get_block(), or saved directly to a JSON file with write_json().

Unexpected behaviour will occur if:

  • Exclamation marks (!) are used within a string parameter, e.g., sim_name = 'A very important sim!'. Exclamation marks are used to declare comments in NML files.

  • You terminate a comma-separated list with a comma, e.g., A = 100, 3600, 5600,. Remove the final comma: A = 100, 3600, 5600.

NMLReader provides the following static methods to convert from NML syntax to Python syntax:

  • read_nml_int: NML integer to Python integer.

  • read_nml_float: NML float to Python float.

  • read_nml_bool: NML boolean to Python boolean.

  • read_nml_str: NML string to Python string.

  • read_nml_list: NML list (comma-separated values) to Python list.

Parameters:

Name Type Description Default
nml_file Union[str, PathLike]

Path to the NML file.

required

Attributes:

Name Type Description
nml_str str

The NML file as a string.

Examples:

>>> from glmpy.nml import nml

Fetch an individual block of parameters with the get_block() method:

>>> my_nml = nml.NMLReader(nml_file="glm3.nml")
>>> setup = my_nml.get_block("glm_setup")
>>> print(setup)
{
    "sim_name": "GLM Simulation",
    "max_layers": 60,
    "min_layer_vol": 0.0005,
    "min_layer_thick": 0.05,
    "max_layer_thick": 0.1,
    "non_avg": True
}
>>> glm_setup = nml.NMLGLMSetup()
>>> glm_setup.set_attributes(setup)

Expand the functionality of NMLReader to read in a non-standard block:

>>> debugging_types = {
...     "debugging": {
...         "disable_evap": nml.NMLReader.read_nml_bool
... }
>>> my_nml = nml.NMLReader(
...     nml_file="glm3.nml", converters=debugging_types
... )
>>> debugging = my_nml.get_block("debugging")
>>> print(debugging)
{
    "disable_evap": False
}

Convert the NML file directly to a JSON file with write_json():

>>> my_nml = nml.NMLReader(nml_file="glm3.nml")
>>> my_nml.write_json(json_file="glm3.json")

get_block(block)

Get a block of parameters.

Returns a dictionary of model parameters for a specified block. Useful for setting the attributes of the corresponding nml.NML* class.

Parameters block block_name: str Name of the block to fetch the parameter dictionary for.

Examples:

>>> from glmpy.nml import nml
>>> my_nml = nml.NMLReader(nml_file="glm3.nml")
>>> setup = my_nml.get_block("glm_setup")
>>> print(setup)
{
    "sim_name": "GLM Simulation",
    "max_layers": 60,
    "min_layer_vol": 0.0005,
    "min_layer_thick": 0.05,
    "max_layer_thick": 0.1,
    "non_avg": True
}

get_converters(block=None)

Get the current dictionary of methods for reading/writing NML parameters.

Returns a dictionary of the syntax conversion methods used in the instance of NMLReaderor NMLWriter.

get_nml()

Get all blocks of parameters.

Returns a dictionary of all blocks and their corresponding dictionary of parameters.

Examples:

>>> from glmpy.nml import nml
>>> my_nml = nml.NMLReader(nml_file="glm3.nml")
>>> nml_dict = my_nml.get_nml()

read_nml_bool(nml_bool) staticmethod

NML bool to Python bool.

Converts a string containing a NML-like boolean to a Python boolean.

Parameters:

Name Type Description Default
nml_bool str

A string representing a NML boolean. Valid booleans are ".true.", ".TRUE.", ".false.", and ".FALSE.".

required

Examples:

>>> from glmpy.nml import nml
>>> my_nml_bool = ".true."
>>> python_bool = nml.NMLReader.read_nml_bool(my_nml_bool)
>>> print(python_bool)
True
>>> print(type(python_bool))
<class 'bool'>

read_nml_float(nml_float) staticmethod

NML float to Python float.

Converts a string containing a NML-like float to a Python float.

Parameters:

Name Type Description Default
nml_float str

A string representing a NML float.

required

Examples:

>>> from glmpy.nml import nml
>>> my_nml_float = "1.23"
>>> python_float = nml.NMLReader.read_nml_int(my_nml_float)
>>> print(python_float)
1.23
>>> print(type(python_float))
<class 'float'>

read_nml_int(nml_int) staticmethod

NML int to Python int.

Converts a string containing a NML-like integer to a Python integer.

Parameters:

Name Type Description Default
nml_int str

A string representing a NML integer.

required

Examples:

>>> from glmpy.nml import nml
>>> my_nml_int = "123"
>>> python_int = nml.NMLReader.read_nml_int(my_nml_int)
>>> print(python_int)
123
>>> print(type(python_int))
<class 'int'>

read_nml_list(nml_list, converter_func) staticmethod

NML list to Python list.

Converts a NML comma-separated list to a Python list. Applies a defined syntax function to each element of the list.

Parameters:

Name Type Description Default
nml_list Union[str, List[str]]

A string of comma-separated values or a Python list of strings of comma-separated values.

required
converter_func Callable
required
comma
required

Examples:

Converting a comma-separated list of strings:

>>> from glmpy.nml import nml
>>> my_nml_list = "'foo', 'bar', 'baz'"
>>> python_list = nml.NMLReader.read_nml_list(
...     my_nml_list, 
...     converter_func=nml.NMLReader.read_nml_str
... )
>>> print(python_list)
['foo', 'bar', 'baz']
>>> print(type(python_list))
<class 'list'>

Converting a list of comma-separated NML booleans:

>>> my_nml_list = [
...     ".true., .false., .true.,", ".false., .true., .false."
... ]
>>> python_list = nml.NMLReader.read_nml_list(
...     my_nml_list, 
...     converter_func=nml.NMLReader.read_nml_bool
... )
>>> print(python_list)
[True, False, True, False, True, False]
>>> print(type(python_list))
<class 'list'>

read_nml_str(nml_str) staticmethod

NML str to Python str.

Converts a string containing a NML-like string to a Python string.

Parameters:

Name Type Description Default
nml_str str

A string representing a NML string, i.e., characters enclosed in "" or ''.

required

Examples:

>>> from glmpy.nml import nml
>>> my_nml_str = "'foo'"
>>> python_str = nml.NMLReader.read_nml_str(my_nml_str)
>>> print(python_str)
foo
>>> print(type(python_str))
<class 'str'>

set_converters(converters)

Update methods for reading/writing NML parameters.

Updates or overwrites the default methods that NMLReader and NMLWriter use to convert parameter values from Python to NML and vice versa.

Parameters:

Name Type Description Default
converters Dict[str, Dict[str, Callable]]

A nested dictionary where the keys are the NML block names and the values are a dictionary of parameter names (keys) and syntax conversion methods (values, e.g., NMLReader.read_nml_str for use with NMLReader or NMLWriter.write_nml_str for use with NMLWriter).

required

Examples:

Use in NMLWriter:

Consider an example where we have an unsupported configuration block that we wish to write to a NML file:

>>> from glmpy.nml import nml
>>> nml_dict = {
...     "glm_setup": {
...         "sim_name": "Sparkling Lake",
...         "max_layers": 500,
...         "min_layer_vol": 0.5,
...         "min_layer_thick": 0.15,
...         "max_layer_thick": 0.5,
...         "density_model": 1,
...         "non_avg": True,
...     },
...     "custom_block": {
...         "custom_param": True
...     }
... }

To write custom_block, we create a similarly structured dictionary where the value for "custom_param" is the appropriate NMLWriter.write_nml_* static method:

>>> converters = {
...     "custom_block": {
...         "custom_block": nml.NMLWriter.write_nml_bool
...     }
... }

After initialising NMLWriter, pass converters to the
set_converters() method and write the NML file:

>>> my_nml = nml.NMLWriter(nml_dict=nml_dict)
>>> my_nml.set_converters(converters)
>>> my_nml.write_nml("glm3.nml")

Use in NMLReader:

Consider an example where we have an unsupported configuration block that we wish to read from the following glm3.nml file:

&glm_setup
   sim_name = 'GLM Simulation'
   max_layers = 60
   min_layer_vol = 0.0005
   min_layer_thick = 0.05
   max_layer_thick = 0.1
   non_avg = .true.
/
&custom_block
   custom_param = .true.
/

Define a nested dictionary where the block name is the key and the block value is a dictionary of parameter name and the appropriate NMLReader.read_nml_* static method:

>>> converters = {
...     "custom_block": {
...         "custom_block": nml.NMLReader.read_nml_bool
...     }
... }

After initialising NMLReader, pass converters to the
set_converters() method and read the NML file:

>>> my_nml = nml.NMLReader("glm3.nml")
>>> my_nml.set_converters(converters)
>>> my_nml.get_nml()

write_json(json_file)

Write a JSON file of model parameters.

Converts paramters in a NML file to valid JSON syntax and writes to file.

Parameters:

Name Type Description Default
json_file Union[str, PathLike]

Output path of the JSON file.

required

Examples:

>>> from glmpy.nml import nml
>>> my_nml = nml.NMLReader(nml_file="glm3.nml")
>>> my_nml.write_json(json_file="glm3.json")

NMLWriter

Bases: _NML

Write NML files.

Write a NML file from a nested dictionary of block names (keys) and parameter dictionaries (values). By default, NMLWriter will automatically determine the which syntax conversion methods should be used to write the NML file. This functionality can be expicitly controlled using the set_converters method.

NMLWriter provides the following static methods to convert from Python syntax to NML syntax:

  • write_nml_str: Python string to NML string.

  • write_nml_bool: Python bool to NML bool.

  • write_nml_list: Python list to NML list (comma-separated values).

Parameters:

Name Type Description Default
nml_dict Dict[str, Dict[str, Any]]

A dictionary where the keys are the block names and the values are dictionaries of parameter names (keys) and parameter values (values).

required
detect_types bool

Let NMLWriter determine which syntax conversion methods should be used to write the NML file. Default is True. If False, NMLWriter relies on an internal dictionary that stores the syntax conversion methods for each parameter. This dictionary can be updated/expanded with the set_converters() method.

True
list_len Union[int, None]

The number of items in a comma-separated list to write before adding a line break. When set to None, no line breaks are added. Default is None.

None

Examples:

>>> from glmpy.nml import nml

Create a nested dictionary of blocks (keys) and parameters (values) to write:

>>> my_nml_dict = {
...     "glm_setup": {
...         "sim_name": "Sparkling Lake",
...         "max_layers": 500,
...         "min_layer_vol": 0.5,
...         "min_layer_thick": 0.15,
...         "max_layer_thick": 0.5,
...         "density_model": 1,
...         "non_avg": True,
...     },
...     "mixing": {
...         "surface_mixing": 1,
...         "coef_mix_conv": 0.2,
...         "coef_wind_stir": 0.402,
...         "coef_mix_shear": 0.2,
...         "coef_mix_turb": 0.51,
...         "coef_mix_KH": 0.3,
...         "deep_mixing": 2,
...         "coef_mix_hyp": 0.5,
...         "diff": 0.0,
...     }
... }

Initialise NMLWriter and set the nml_dict attribute:

>>> my_nml = nml.NMLWriter(nml_dict=my_nml_dict)

Write the NML to file by calling the write_nml method:

>>> my_nml.write_nml(nml_file="glm3.nml")

get_converters(block=None)

Get the current dictionary of methods for reading/writing NML parameters.

Returns a dictionary of the syntax conversion methods used in the instance of NMLReaderor NMLWriter.

set_converters(converters)

Update methods for reading/writing NML parameters.

Updates or overwrites the default methods that NMLReader and NMLWriter use to convert parameter values from Python to NML and vice versa.

Parameters:

Name Type Description Default
converters Dict[str, Dict[str, Callable]]

A nested dictionary where the keys are the NML block names and the values are a dictionary of parameter names (keys) and syntax conversion methods (values, e.g., NMLReader.read_nml_str for use with NMLReader or NMLWriter.write_nml_str for use with NMLWriter).

required

Examples:

Use in NMLWriter:

Consider an example where we have an unsupported configuration block that we wish to write to a NML file:

>>> from glmpy.nml import nml
>>> nml_dict = {
...     "glm_setup": {
...         "sim_name": "Sparkling Lake",
...         "max_layers": 500,
...         "min_layer_vol": 0.5,
...         "min_layer_thick": 0.15,
...         "max_layer_thick": 0.5,
...         "density_model": 1,
...         "non_avg": True,
...     },
...     "custom_block": {
...         "custom_param": True
...     }
... }

To write custom_block, we create a similarly structured dictionary where the value for "custom_param" is the appropriate NMLWriter.write_nml_* static method:

>>> converters = {
...     "custom_block": {
...         "custom_block": nml.NMLWriter.write_nml_bool
...     }
... }

After initialising NMLWriter, pass converters to the
set_converters() method and write the NML file:

>>> my_nml = nml.NMLWriter(nml_dict=nml_dict)
>>> my_nml.set_converters(converters)
>>> my_nml.write_nml("glm3.nml")

Use in NMLReader:

Consider an example where we have an unsupported configuration block that we wish to read from the following glm3.nml file:

&glm_setup
   sim_name = 'GLM Simulation'
   max_layers = 60
   min_layer_vol = 0.0005
   min_layer_thick = 0.05
   max_layer_thick = 0.1
   non_avg = .true.
/
&custom_block
   custom_param = .true.
/

Define a nested dictionary where the block name is the key and the block value is a dictionary of parameter name and the appropriate NMLReader.read_nml_* static method:

>>> converters = {
...     "custom_block": {
...         "custom_block": nml.NMLReader.read_nml_bool
...     }
... }

After initialising NMLReader, pass converters to the
set_converters() method and read the NML file:

>>> my_nml = nml.NMLReader("glm3.nml")
>>> my_nml.set_converters(converters)
>>> my_nml.get_nml()

write_nml(nml_file='glm3.nml')

Write the .nml file.

Write the .nml of model parameters.

Parameters:

Name Type Description Default
nml_file str

File path to save .nml file, by default glm3.nml.

'glm3.nml'

Examples:

>>> nml_file.write_nml(nml_file="my_lake.nml")

write_nml_bool(python_bool) staticmethod

Python boolean to NML boolean.

Convert a Python boolean to a string representation of a NML boolean.

Parameters:

Name Type Description Default
python_bool bool

A Python boolean

required

Examples:

>>> from glmpy.nml import nml
>>> bool = nml.NMLWriter.write_nml_bool(True)
>>> print(bool)
.true.

write_nml_list(python_list, converter_func=None, list_len=None) staticmethod

Python list to NML comma-separated list.

Convert a Python list to a comma-separated list. A function can be optionally passed to the converter_func parameter to format the syntax of each list item, e.g., write_nml_str() and write_nml_bool().

Parameters:

Name Type Description Default
python_list List[Any]

A Python list

required
converter_func Union[Callable, None]

A function used to format each list item. Default is None.

None
list_len Union[int, None]

The number of list items to write before adding a line break. When set to None, no line breaks are added. Default is None.

None

Examples:

>>> from glmpy.nml import nml
>>> nml_list = nml.NMLWriter.write_nml_list([1, 2, 3])
>>> print(nml_list)
1,2,3
>>> nml_list = nml.NMLWriter.write_nml_list(
...     [True, False, True], 
...     converter_func=nml.NMLWriter.write_nml_bool
... )
>>> print(nml_list)
.true.,.false.,.true.
>>> nml_list = nml.NMLWriter.write_nml_list(
...     [1, 2, 3, 4, 5, 6, 7, 8 ,9],
...     None,
...     3
... )
>>> print(nml_list)
1,2,3,
4,5,6,
7,8,9

write_nml_param(param_name, param_value, converter_func=None) staticmethod

GLM parameter/value string.

Construct a string containing a GLM parameter and value with the correct.nml syntax formatting.

Parameters:

Name Type Description Default
param_dict

A dictionary containing GLM parameters (keys) and values, e.g., from the __call__() method of a nml.NMLGLMSetup instance.

required
param

The dictionary key, i.e., GLM parameter, to construct the string for.

required
converter_func Union[Callable, None]

A function used to format the syntax of the value. Default is None.

None

Examples:

>>> from glmpy.nml import nml
>>> param_name = "non_avg"
>>> param_value = True
>>> nml_param = nml.NMLWriter.write_nml_param(
...     param_name=param_name,
...     param_value=param_value,
...     converter_func=nml.NMLWriter.write_nml_bool
... )
>>> print(formatted_param)
   non_avg = .true.

write_nml_str(python_str) staticmethod

Python string to NML string.

Convert a Python string to a Fortran string by adding inverted commas.

Parameters:

Name Type Description Default
python_str str

A Python string

required

Examples:

>>> from glmpy.nml import nml
>>> string = nml.NMLWriter.write_nml_str("GLM")
>>> print(string)
'GLM'