12 Pathogens & Microbial Indicator Organisms

12.1 Contributors

Matthew R. Hipsey

12.2 Overview

Understanding the fate and transport of pathogenic and indicator microbes within drinking water reservoirs, rivers and coastal waters is critical for environmental managers to effectively reduce public health risks. Over the past decade several advances have been made for the simulating organism dynamics using coupled hydrodynamic-organism fate models (Hipsey et al., 2008). These have generally been used for simulating coliform bacteria (Madani et al. 2022), with applications also reported for other organisms such as Cryptosporidium (Hipsey et al., 2004) and viruses (Sokolova et al., 2012). In general, these models simulate organism concentrations within water bodies by accounting for external loading (e.g. from stormwater or wastewater inputs), advection and mixing process that occur within the interior of the water body, organism inactivation and sedimentation. This chapter describes the basis for the AED pathogen model based on relevant information from empirical and prior modelling studies, and then summarises the setup requirements of the pathogen module within the AED model framework.

12.3 Model Description

General Approach

The general balance equation for organism transport and fate is summarized in Hipsey et al. (2008) as:

\[\begin{eqnarray} \frac{D}{Dt}C = \color{darkgray}{ \mathbb{M} + \mathcal{S} } \quad &+& \overbrace{f_{growth}^{C} -f_{mor}^{C} - f_{set}^{C} +\hat{f}_{res}^{C}}^\text{aed_pathogen} \\ \tag{12.1} \end{eqnarray}\]

where \(C\) is the organic concentration (orgs m-3). Within the AED model framework, the transport terms are solved via hydrodynamic model transport routines and the remaining terms are simulated by the aed_pathogens module.

The main term controlling pathogen fate is the mortality or inactivation term, \(f_{mor}^{C}\):

\[\begin{equation} f_{mor}^{C} = [k_{g}(T,S,DOC_{L})-k_{d}(T,S,pH)-k_{l}(I_{0},S,DO,pH)-k_{s}(T,S,SS)-k_{p}(T)]C \tag{12.2} \end{equation}\]

which relates organism inactivation to the environmental conditions experienced that influence their viability (including temperature, salinity, light intensity, dissolved organic carbon, oxygen and pH). This comprehensive description is usually simplified for specific applications, based on justification of the dominant processes present in any particular waterbody and available data for model setup and validation.

The terms for simulation of organism resuspension and inactivation are described in next.

12.3.1 Process Descriptions

Natural Mortality

Natural mortality, or the ‘dark-death rate’, \(k_d\), is an important process determining the net rate of die off of protozoan, viral and bacterial organisms and has been reported to vary for specific organisms due to changes in temperature, salinity and pH. The reported die off rates in the literature however are widely variable, with a synthesis of numerous studies from a range of water bodies presented in Hipsey et al. (2008). For freshwater reservoirs, changes in salinity and pH are unlikely to be a significant driver of organism viability relative to the range presented Hipsey et al. (2008) and therefore a simple constant die-off rate that depends on temperature is appropriate:

\[\begin{equation} k_{d}(T) = k_{d_{20}}\vartheta _{M}^{T-20} \tag{12.3} \end{equation}\]

where \(k_{d_{20}}\) is the rate of mortality in the dark at 20C and in freshwater. Since the AED2 implementation of the model to be applied with NPD does not include protozoan grazing as a separate term (as in Eq 1), the grazing effect needs to be embodied within the \(k_{d_{20}}\) term. This effectively assumes a constant grazing pressure over time, and if chosen to be a low value this will essentially ensure conservative estimate of the die-off due to grazing. Empirical data from Wivenhoe dam shows the presence of native micro-organisms can increase the background die-off rate by 1.1-3.0x (eg Table 5 in Sidhu and Toze (2012)).

Sunlight Inactivation

Depending on the clarity of the water, the light climate of the lake can be a dominant factor influencing organism viability and this has been observed empirically in Wivenhoe Dam by Sidhu and Toze (2012). Different organism types experience different sensitivity to different light bandwidths, with most organisms sensitive to UV-B and UV-A and some sensitive to light in the visible spectrum (Sinton et al., 2007). Hipsey et al. (2008) formulated a multiple band-width model for organisms that included direct and indirect mechanisms for sunlight mediated inactivation by accounting for the effect of salinity, oxygen and pH on free radical formation. Here we use a simplified form that accounts only for direct sunlight denaturation as the indirect mechanism is more specific to MS2 phage relative to rotavirus for example (Verbyla and Mihelcic, 2015). The implemented expression is therefore:

\[\begin{equation} k_{l} = \sum_{b=1}^{N_{b}}[\varphi k_{b} I_{b}] \tag{12.4} \end{equation}\]

where \(N_B\) is the number of discrete solar bandwidths to be modeled, \(b\) is the bandwidth class {1, 2, … , \(N_B\)}, \(k_b\) is the freshwater inactivation rate coefficient for exposure to the \(b^{th}\) class (m2 MJ-1), \(I_b\) is the intensity of the \(b^{th}\) bandwidth class (Wm-2), \(\varphi\) is a constant to convert units from seconds to days and J to MJ (= 8.64*10-2).

In AED2, the light intensity is computed for 3 distinct bandwidths, including UV-B, UV-A and PAR, and the attenuation of each through the reservoir water column is based on bandwidth specific light extinction coefficients, that account for the effect of turbidity and chromophoric dissolved organic matter (CDOM) on attenutation.

Sedimentation

Sedimentation of organisms occurs at a rate depending on the degree to which the population is attached to suspended particles. Within AED2, this is captured by simulating free and attached organisms and multiple groups of particles may be accounted for. If we assume a single dominant particle size and ignore the effect of salinity on the settling velocity, then the expression in Hipsey et al. (2008) for the effective sedimentation velocity reduces to:

\[\begin{equation} k_{s}=(1-f_{a})\frac{V_{c}}{\Delta z}+f_{a}\frac{V_{s}}{\Delta z} \tag{12.5} \end{equation}\]

where \(f_a\) is the attached fraction, and \(V\) is the vertical velocity of organisms or sediment particles.

Resupension

Resuspension of organisms accumulated within the sediment has been show to be a relatively important terms in environments where high currents or waves exist. In reservoirs this can occur in the lake margins or deeper in the lake where internal waves or river underflows increase the shear stress at the sediment. The amount of organisms that resuspend depends not only on the shear stress but also n the concentration of organisms in the surficial layers of the sediment. This may be modelled by accounting for the deposited organisms, decay within the sediment and resuspension rate, however, this is notoriously difficult given potentially complex dynamics of organisms in the sediment. Instead we assume that a standard background concentration exists within different sediment regions (based on depth and local geomorphology) and simulate resuspension rate as:

\[\begin{equation} C_{r}(\tau)=\alpha_{c}\frac{(\tau - \tau_{c_{s}})}{\tau _{ref}}\frac{1}{\Delta z_{bot}} \tag{12.6} \end{equation}\]

where, \(\alpha_C\) is the rate of organism suspension (orgs m-2s-1), which occurs when the critical shear stress is exceeded in the relative computational cell.

+C_{r}(,SS_{SED},C_{SED})+

12.3.2 Variable Summary

State Variables

Table 12.1: State variables
Variable Name Description Units Variable Type Core/Optional
PTH_name Concentration of pathogens cfu/100mL Pelagic Optional

Diagnostics

12.3.3 Parameter Summary

Table 12.2: Diagnostics
p_name ‘crypto’ ‘ecoli’ ‘totalcoli’ string pathogen name
coef_grwth_uMAX 0.00e+00 3.00e+00 2.40e+00 real Max growth rate at 20C
coef_grwth_Tmin 4.00e+00 4.00e+00 4.00e+00 real Tmin and Tmax f(T)
coef_grwth_Tmax 3.50e+01 3.50e+01 3.50e+01 real Tmin and Tmax ?
coef_grwth_T1 8.00e-03 8.00e-03 8.00e-03 real coef_grwth_T1 and coef_grwth_T2
coef_grwth_T2 1.00e-01 1.00e-01 1.00e-01 real coef_grwth_T1 and coef_grwth_T2
coef_grwth_Kdoc 0.00e+00 3.00e-01 3.00e-01 real Half-saturation for growth coef_grwth_Kdoc
coef_grwth_ic 0.00e+00 0.00e+00 0.00e+00 real coef_grwth_ic
coef_mort_kd20 3.00e-02 4.80e-01 3.40e-01 real Mortality rate (Dark death rate) @ 20C and 0 psu
coef_mort_theta 1.08e+00 1.08e+00 1.11e+00 real Temperature multiplier for mortality: coef_mort_theta
coef_mort_c_SM 0.00e+00 0.00e+00 2.00e-07 real Salinity effect on mortality
coef_mort_alpha 0.00e+00 6.10e+00 4.20e+00 real Salinity effect on mortality
coef_mort_beta 0.00e+00 2.50e-01 2.50e-01 real Salinity effect on mortality
coef_mort_c_PHM 0.00e+00 5.00e+01 5.00e+01 real pH effect on mortality
coef_mort_K_PHM 0.00e+00 6.00e+00 6.00e+00 real pH effect on mortality
coef_mort_delta_M 0.00e+00 4.00e+00 4.00e+00 real pH effect on mortality
coef_mort_fdoc 0.00e+00 5.00e-01 5.00e-01 real Fraction of mortality back to doc
coef_light_kb_vis 0.00e+00 9.70e-02 9.70e-02 real Light inactivation
coef_light_kb_uva 0.00e+00 1.16e+00 1.16e+00 real Light inactivation
coef_light_kb_uvb 0.00e+00 3.64e+01 3.64e+01 real Light inactivation
coef_light_cSb_vis 6.70e-03 6.70e-03 6.70e-03 real Salinity effect on light inactivation
coef_light_cSb_uva 6.70e-03 6.70e-03 6.70e-03 real Salinity effect on light inactivation
coef_light_cSb_uvb 6.70e-03 6.70e-03 6.70e-03 real Salinity effect on light inactivation
coef_light_kDOb_vis 5.00e-01 5.00e-01 5.00e-01 real DO effect on light
coef_light_kDOb_uva 5.00e-01 5.00e-01 5.00e-01 real DO effect on light
coef_light_kDOb_uvb 5.00e-01 5.00e-01 5.00e-01 real DO effect on light
coef_light_cpHb_vis 1.00e+01 1.00e+01 1.00e+01 real pH effect on light inactivation
coef_light_cpHb_uva 1.00e+01 1.00e+01 1.00e+01 real pH effect on light inactivation
coef_light_cpHb_uvb 1.00e+01 1.00e+01 1.00e+01 real pH effect on light inactivation
coef_light_KpHb_vis 5.00e+00 5.00e+00 5.00e+00 real pH effect on light inactivation
coef_light_KpHb_uva 5.00e+00 5.00e+00 5.00e+00 real pH effect on light inactivation
coef_light_KpHb_uvb 5.00e+00 5.00e+00 5.00e+00 real pH effect on light inactivation
coef_light_delb_vis 3.00e+00 3.00e+00 3.00e+00 real exponent for pH effect on light inactivation
coef_light_delb_uva 3.00e+00 3.00e+00 3.00e+00 real exponent for pH effect on light inactivation
coef_light_delb_uvb 3.00e+00 3.00e+00 3.00e+00 real exponent for pH effect on light inactivation
coef_pred_kp20 0.00e+00 2.00e-01 2.00e-01 real Loss rate due to predation and temp multiplier
coef_pred_theta_P 1.00e+00 1.04e+00 1.04e+00 real Loss rate due to predation and temp multiplier
coef_sett_fa 0.00e+00 9.40e-01 8.10e-01 real Attached fraction in water column
coef_sett_w_path -2.50e-06 -5.00e-07 -5.00e-07 real Sedimentation velocity (m/d) at 20C (-ve means down) for NON-ATTACHED orgs
coef_resus_epsilonP 1.00e-02 1.00e-02 1.00e-02 real Pathogen resuspension rate
coef_resus_tauP_0 1.00e-02 1.00e-02 1.00e-02 real Critical shear stress for organism resuspension

12.3.5 Feedbacks to the Host Model

12.4 Setup & Configuration

12.4.1 Setup Example

Table 12.3: Parameters and configuration
Parameter Name Description Units Parameter Type Default Typical Range Comment
num_pathogens number of pathogens to model 1-? NA NA NA NA


An example nml block for the phytoplankton module is shown below:

&aed2_pathogens
   num_pathogens = 2
   the_pathogens = 1,3
   dbase = './the_path_to/aed2_pathogen_pars.nml'
   ! OPTIONAL VARS HERE
   resuspension
   num_ss
   ss_set
   ss_tau
   ss_ke
   sim_sedorgs
   oxy_variable
   epsilon
   tau_0
   tau_0_min
   Ktau_0
   extra_diag
   att_ts      
 /


2018 : aed2_pathogen_pars.nml parameter formatting style:

!-------------------------------------------------------------------------------
! aed2_pathogen_pars.nml  :  PATHOGEN PARAMETER DATABASE
!-------------------------------------------------------------------------------
!                    p_name : [  string] - pathogen name
!           coef_grwth_uMAX : [    real] - Max growth rate at 20C
!           coef_grwth_Tmin : [    real] - Tmin and Tmax, f(T)
!           coef_grwth_Tmax : [    real] - Tmin and Tmax, f(T)
!             coef_grwth_T1 : [    real] - coef_grwth_T1  and  coef_grwth_T2
!             coef_grwth_T2 : [    real] - coef_grwth_T1  and  coef_grwth_T2
!           coef_grwth_Kdoc : [    real] - Half-saturation for growth, coef_grwth_Kdoc
!             coef_grwth_ic : [    real] - coef_grwth_ic
!            coef_mort_kd20 : [    real] - Mortality rate (Dark death rate) @ 20C and 0 psu
!           coef_mort_theta : [    real] - Temperature multiplier for mortality: coef_mort_theta
!            coef_mort_c_SM : [    real] - Salinity effect on mortality
!           coef_mort_alpha : [    real] - Salinity effect on mortality
!            coef_mort_beta : [    real] - Salinity effect on mortality
!           coef_mort_c_PHM : [    real] - pH effect on mortality
!           coef_mort_K_PHM : [    real] - pH effect on mortality
!         coef_mort_delta_M : [    real] - pH effect on mortality
!            coef_mort_fdoc : [    real] - Fraction of mortality back to doc
!         coef_light_kb_vis : [    real] - Light inactivation
!         coef_light_kb_uva : [    real] - Light inactivation
!         coef_light_kb_uvb : [    real] - Light inactivation
!        coef_light_cSb_vis : [    real] - Salinity effect on light inactivation
!        coef_light_cSb_uva : [    real] - Salinity effect on light inactivation
!        coef_light_cSb_uvb : [    real] - Salinity effect on light inactivation
!       coef_light_kDOb_vis : [    real] - DO effect on light
!       coef_light_kDOb_uva : [    real] - DO effect on light
!       coef_light_kDOb_uvb : [    real] - DO effect on light
!       coef_light_cpHb_vis : [    real] - pH effect on light inactivation
!       coef_light_cpHb_uva : [    real] - pH effect on light inactivation
!       coef_light_cpHb_uvb : [    real] - pH effect on light inactivation
!       coef_light_KpHb_vis : [    real] - pH effect on light inactivation
!       coef_light_KpHb_uva : [    real] - pH effect on light inactivation
!       coef_light_KpHb_uvb : [    real] - pH effect on light inactivation
!       coef_light_delb_vis : [    real] - exponent for pH effect on light inactivation
!       coef_light_delb_uva : [    real] - exponent for pH effect on light inactivation
!       coef_light_delb_uvb : [    real] - exponent for pH effect on light inactivation
!            coef_pred_kp20 : [    real] - Loss rate due to predation and temp multiplier
!         coef_pred_theta_P : [    real] - Loss rate due to predation and temp multiplier
!              coef_sett_fa : [    real] - Attached fraction in water column
!          coef_sett_w_path : [    real] - Sedimentation velocity (m/d) at 20C (-ve means down) for NON-ATTACHED orgs
!       coef_resus_epsilonP : [    real] - Pathogen resuspension rate
!         coef_resus_tauP_0 : [    real] - Critical shear stress for organism resuspension
&pathogen_data
  pd%p_name               =      'crypto',      'ecoli',  'totalcoli'
  pd%coef_grwth_uMAX      =             0,            3,          2.4
  pd%coef_grwth_Tmin      =             4,            4,            4
  pd%coef_grwth_Tmax      =            35,           35,           35
  pd%coef_grwth_T1        =         0.008,        0.008,        0.008
  pd%coef_grwth_T2        =           0.1,          0.1,          0.1
  pd%coef_grwth_Kdoc      =             0,          0.3,          0.3
  pd%coef_grwth_ic        =        1.0E-9,       1.0E-9,       1.0E-9
  pd%coef_mort_kd20       =          0.03,         0.48,         0.34
  pd%coef_mort_theta      =          1.08,         1.08,         1.11
  pd%coef_mort_c_SM       =             0,      2.0E-10,       2.0E-7
  pd%coef_mort_alpha      =             0,          6.1,          4.2
  pd%coef_mort_beta       =             0,         0.25,         0.25
  pd%coef_mort_c_PHM      =             0,           50,           50
  pd%coef_mort_K_PHM      =             0,            6,            6
  pd%coef_mort_delta_M    =             0,            4,            4
  pd%coef_mort_fdoc       =             0,          0.5,          0.5
  pd%coef_light_kb_vis    =             0,        0.097,        0.097
  pd%coef_light_kb_uva    =             0,         1.16,         1.16
  pd%coef_light_kb_uvb    =             0,         36.4,         36.4
  pd%coef_light_cSb_vis   =        0.0067,       0.0067,       0.0067
  pd%coef_light_cSb_uva   =        0.0067,       0.0067,       0.0067
  pd%coef_light_cSb_uvb   =        0.0067,       0.0067,       0.0067
  pd%coef_light_kDOb_vis  =           0.5,          0.5,          0.5
  pd%coef_light_kDOb_uva  =           0.5,          0.5,          0.5
  pd%coef_light_kDOb_uvb  =           0.5,          0.5,          0.5
  pd%coef_light_cpHb_vis  =            10,           10,           10
  pd%coef_light_cpHb_uva  =            10,           10,           10
  pd%coef_light_cpHb_uvb  =            10,           10,           10
  pd%coef_light_KpHb_vis  =             5,            5,            5
  pd%coef_light_KpHb_uva  =             5,            5,            5
  pd%coef_light_KpHb_uvb  =             5,            5,            5
  pd%coef_light_delb_vis  =             3,            3,            3
  pd%coef_light_delb_uva  =             3,            3,            3
  pd%coef_light_delb_uvb  =             3,            3,            3
  pd%coef_pred_kp20       =             0,          0.2,          0.2
  pd%coef_pred_theta_P    =             1,         1.04,         1.04
  pd%coef_sett_fa         =             0,         0.94,         0.81
  pd%coef_sett_w_path     =       -2.5E-6,      -5.0E-7,      -5.0E-7
  pd%coef_resus_epsilonP  =          0.01,         0.01,         0.01
  pd%coef_resus_tauP_0    =          0.01,         0.01,         0.01
/

Go to the aed2_pathogen_pars.nml Parameter Database


2014: aed2_pathogen_pars.nml style parameters (note: not compatible with the online parameter database)

!----------------------------------------------------------------!
! coef_grwth_uMAX                                                !-- Max growth rate at 20C
! coef_grwth_Tmin, coef_grwth_Tmax                               !-- Tmin and Tmax, f(T)
! coef_grwth_T1, coef_grwth_T2                                   !-- coef_grwth_T1  and  coef_grwth_T2
! coef_grwth_Kdoc                                                !-- Half-saturation for growth, coef_grwth_Kdoc
! coef_grwth_ic                                                  !-- coef_grwth_ic
! coef_mort_kd20                                                 !-- Mortality rate (Dark death rate) @ 20C and 0 psu
! coef_mort_theta                                                !-- Temperature multiplier for mortality: coef_mort_theta
! coef_mort_c_SM, coef_mort_alpha, coef_mort_beta                !-- Salinity effect on mortality
! coef_mort_c_PHM, coef_mort_K_PHM, coef_mort_delta_M            !-- pH effect on mortality
! coef_mort_fdoc                                                 !-- Fraction of mortality back to doc
! coef_light_kb_vis, coef_light_kb_uva, coef_light_kb_uvb        !-- Light inactivation
! coef_light_cSb_vis, coef_light_cSb_uva, coef_light_cSb_uvb     !-- Salinity effect on light inactivation
! coef_light_kDOb_vis, coef_light_kDOb_uva, coef_light_kDOb_uvb  !-- DO effect on light
! coef_light_cpHb_vis, coef_light_cpHb_uva, coef_light_cpHb_uvb  !-- pH effect on light inactivation
! coef_light_KpHb_vis, coef_light_KpHb_uva, coef_light_KpHb_uvb  !-- pH effect on light inactivation
! coef_light_delb_vis, coef_light_delb_uva, coef_light_delb_uvb  !-- exponent for pH effect on light inactivation
! coef_pred_kp20, coef_pred_theta_P                              !-- Loss rate due to predation and temp multiplier
! coef_sett_fa                                                   !-- Attached fraction in water column
! coef_sett_w_path                                               !-- Sedimentation velocity (m/d) at 20C (-ve means down) for NON-ATTACHED orgs
!----------------------------------------------------------------!
!       p_name  coef_grwth_uMAX,    coef_grwth_Tmin,    coef_grwth_Tmax,    coef_grwth_T1,  coef_grwth_T2,  coef_grwth_Kdoc,    coef_grwth_ic,  coef_mort_kd20, coef_mort_theta,    coef_mort_c_SM, coef_mort_alpha,    coef_mort_beta, coef_mort_c_PHM,    coef_mort_K_PHM,    coef_mort_delta_M,  coef_mort_fdoc, coef_light_kb_vis,  coef_light_kb_uva,  coef_light_kb_uvb,  coef_light_cSb_vis, coef_light_cSb_uva, coef_light_cSb_uvb, coef_light_kDOb_vis,    coef_light_kDOb_uva,    coef_light_kDOb_uvb,    coef_light_cpHb_vis,    coef_light_cpHb_uva,    coef_light_cpHb_uvb,    coef_light_KpHb_vis,    coef_light_KpHb_uva,    coef_light_KpHb_uvb,    coef_light_delb_vis,    coef_light_delb_uva,    coef_light_delb_uvb,    coef_pred_kp20, coef_pred_theta_P,  coef_sett_fa,   coef_sett_w_path
&pathogen_data                                                                                                                                                          
pd =       'crypto',          0.0,              4.0,               35.0,            0.008,            0.1,              0.0,             1e-9,            0.03,            1.14,              0.00,             0.0,              0.00,              0.0,                 0.0,                0.0,             0.0,             0.000,               2.13,                  33.7,               0.0067,             0.0067,             0.0067,                 0.5,                    0.5,                    0.5,                   10.0,                  10.0,                  10.0,                  5.0,                    5.0,                    5.0,                    3.0,                    3.0,                    3.0,               0.0,              1.00,          0.00,           -2.\5e-6,
            'ecoli',          0.0,              4.0,               35.0,            0.008,            0.1,              0.3,             1e-9,            0.48,            1.08,             2e-10,             6.1,              0.25,             50.0,                 6.0,                4.0,             0.5,             0.097,               1.16,                  36.4,               0.0067,             0.0067,             0.0067,                 0.5,                    0.5,                    0.5,                   10.0,                  10.0,                  10.0,                  5.0,                    5.0,                    5.0,                    3.0,                    3.0,                    3.0,               0.0,              1.04,          0.94,           -0.5e-6,
            'fcoli',          0.0,              4.0,               35.0,            0.008,            0.1,              0.3,             1e-9,            0.71,            1.06,              2e-3,             1.8,              0.25,             50.0,                 6.0,                4.0,             0.5,             0.097,               1.16,                  36.4,               0.0067,             0.0067,             0.0067,                 0.5,                    0.5,                    0.5,                   10.0,                  10.0,                  10.0,                  5.0,                    5.0,                    5.0,                    3.0,                    3.0,                    3.0,               0.0,              1.04,          0.81,           -0.5e-6,
              'ent',          0.0,              4.0,               35.0,            0.008,            0.1,              0.3,             1e-9,            0.45,            1.04,              0.00,             0.0,              0.25,             50.0,                 6.0,                4.0,             0.5,             0.882,               1.16,                  17.2,               0.0067,             0.0067,             0.0067,                 0.5,                    0.5,                    0.5,                   10.0,                  10.0,                  10.0,                  5.0,                    5.0,                    5.0,                    3.0,                    3.0,                    3.0,               0.0,              1.04,          0.81,           -0.5e-6,
        'totalcoli',          0.0,              4.0,               35.0,            0.008,            0.1,              0.3,             1e-9,            0.34,            1.11,              2e-7,             4.2,              0.25,             50.0,                 6.0,                4.0,             0.5,             0.097,               1.16,                  36.4,               0.0067,             0.0067,             0.0067,                 0.5,                    0.5,                    0.5,                   10.0,                  10.0,                  10.0,                  5.0,                    5.0,                    5.0,                    3.0,                    3.0,                    3.0,               0.0,              1.04,          0.81,           -0.5e-6,
 /

12.5 Case Studies & Examples

12.5.1 Case Study

12.5.2 Publications

References

Hipsey, M.R., Antenucci, J.P., Brookes, J.D., 2008. A generic, process-based model of microbial pollution in aquatic systems: MICROBIAL POLLUTION IN AQUATIC SYSTEMS, Water Resources Research 44. https://doi.org/10.1029/2007wr006395
Hipsey, M.R., Antenucci, J.P., Brookes, J.D., Burch, M.D., Regel, R.H., Linden, L., 2004. A three dimensional model of Cryptosporidium dynamics in lakes and reservoirs: A new tool for risk management, International Journal of River Basin Management 2, 181–197. https://doi.org/10.1080/15715124.2004.9635231
Sidhu, J.P.S., Toze, S., 2012. Assessment of pathogen survival potential during managed aquifer recharge with diffusion chambers, Journal of Applied Microbiology 113, 693–700. https://doi.org/10.1111/j.1365-2672.2012.05360.x
Sinton, L., Hall, C., Braithwaite, R., 2007. Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water, Journal of Water and Health 5, 357–365. https://doi.org/10.2166/wh.2007.031
Sokolova, E., Åström, J., Pettersson, T.J.R., Bergstedt, O., Hermansson, M., 2012. Estimation of pathogen concentrations in a drinking water source using hydrodynamic modelling and microbial source tracking, Journal of Water and Health 10, 358–370. https://doi.org/10.2166/wh.2012.183
Verbyla, M.E., Mihelcic, J.R., 2015. A review of virus removal in wastewater treatment pond systems, Water Research 71, 107–124. https://doi.org/10.1016/j.watres.2014.12.031